Problem 4A,4

show that the constant 3 in the Vitali Covering cannot be replaced by a smaller positive constant.
Proof: Just take two intervals, $(0,1),\left(1-\frac{1}{n}, 2-\frac{1}{n}\right)$, where n can be arbitrary large positive integer.

Problem 4A,8

Find a formula for the Hardy-Littlewood maximal function of the function $h: \mathbb{R} \rightarrow[0, \infty)$ defined by

$$
f(x)= \begin{cases}x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof:

$$
f^{*}(x)= \begin{cases}\frac{1}{4(1-x)} & \text { if } x \in\left(-\infty, \frac{1}{2}\right] \\ x & \text { if } x \in\left[\frac{1}{2}, 1\right) \\ \frac{x-\sqrt{x^{2}-1}}{2} & \text { if } x \in(1, \infty)\end{cases}
$$

Problem 4A,11

Give an example of a Borel measurable function $h: \mathbb{R} \rightarrow[0, \infty)$ such that $h^{*}(b)<\infty$ for all $b \in \mathbb{R}$ but $\sup \left\{h^{*}(b) \mid b \in \mathbb{R}\right\}=\infty$.

Proof: We construct a continuous integrable function f as follows: for each integer n, set $f(n)=|n|, f\left(n-\frac{1}{n^{9}}\right)=0$, $f\left(n+\frac{1}{n^{9}}\right)=0$. Then let f be linear function between these points. Since $\sum_{n=-\infty}^{\infty} \frac{1}{n^{8}}<\infty$, we know the function is integrable and continuous. Note $f^{*}(x) \geq f(x)$, we know that $\sup \left\{h^{*}(b) \mid b \in \mathbb{R}\right\}=\infty$. Note that for every $x_{0} \in \mathbb{R}, \lim _{b \rightarrow+\infty} \frac{1}{2 b} \int_{x_{0}-b}^{x_{0}+b} f(x) d x=0, \lim _{b \rightarrow 0} \frac{1}{2 b} \int_{x_{0}-b}^{x_{0}+b} f(x) d x=f\left(x_{0}\right), \frac{1}{2 b} \int_{x_{0}-b}^{x_{0}+b} f(x) d x=0$ is continuous function in $b \in(0, \infty)$, we know that $h: \mathbb{R} \rightarrow[0, \infty)$ such that $h^{*}(b)<\infty$ for all $b \in \mathbb{R}$.

Problem 4A,13

Show that there exists $h \in \mathcal{L}^{1}(\mathbb{R})$ such that $h^{*}(b)=\infty$ for every $b \in \mathbb{Q}$.
Proof: First we can construct a integrable function g such that $g^{*}(0)=\infty, g^{*}(x)<\infty$ for each $x \neq 0$ (e.g. consider $g(x)=\log |x|$ near 0). Now let $\left\{q_{k}\right\}_{k=1}^{\infty}$ be all rational numbers. Our h can be chosed to be

$$
h(x)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} g\left(x-q_{k}\right)
$$

It is easy to check this is convergent series and satisfies all the assumption.

Problem 4B,2

Suppose $f \in \mathcal{L}^{1}(\mathbb{R})$. Prove that for almost every $b \in \mathbb{R}$,

$$
\lim _{t \downarrow 0} \sup \left\{\frac{1}{|I|} \int_{I}\left|f-f_{I}\right|: I \text { is an interval of length } t \text { containing } b\right\}=0
$$

Proof: Let b be a Lebesgue point, which means

$$
\lim _{t \downarrow 0} \frac{1}{2 t} \int_{b-t}^{b+t}|f-f(b)|=0
$$

Let I be an interval containing b. Then $\left|\frac{1}{|I|} \int_{I} f(x) d x-f(b)\right|=\left|\frac{1}{|I|} \int_{I}(f(x)-f(b))\right| \leq \frac{1}{|I|} \int_{I}|f(x)-f(b)| d x$ $\leq \frac{1}{|I|} \int_{b-|I|}^{b+|I|}|f(x)-f(b)| d x$. Therefore

$$
\lim _{t \downarrow 0} \sup \left\{f_{I}-f(b): I \text { is an interval of length } t \text { containing } b\right\}=0
$$

This obviously implies the

$$
\lim _{t \downarrow 0} \sup \left\{\frac{1}{|I|} \int_{I}\left|f-f_{I}\right|: I \text { is an interval of length } t \text { containing } b\right\}=0
$$

Problem 4B,3

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Lebesgue measurable function such that $f^{2} \in \mathcal{L}^{1}(\mathbb{R})$. Prove that

$$
\lim _{t \downarrow 0} \frac{1}{2 t} \int_{b-t}^{b+t}|f-f(b)|^{2}=0
$$

Proof: Note that $f^{2} \in \mathcal{L}^{1}(\mathbb{R})$ implies $f \in \mathcal{L}_{\text {loc }}^{1}(\mathbb{R})$. And since we are dealing with local property, we in fact can assume $f \in \mathcal{L}^{1}(\mathbb{R})$. Then take b to be both Lebeges point of f, f^{2}. Then

$$
\begin{aligned}
& \lim _{t \downarrow 0} \frac{1}{2 t} \int_{b-t}^{b+t}|f-f(b)|=0 \\
& \lim _{t \downarrow 0} \frac{1}{2 t} \int_{b-t}^{b+t}\left|f^{2}-f^{2}(b)\right|=0
\end{aligned}
$$

which of course implies

$$
\begin{aligned}
& \lim _{t \downarrow 0} \frac{1}{2 t} \int_{b-t}^{b+t} f d x=f(b) \\
& \lim _{t \downarrow 0} \frac{1}{2 t} \int_{b-t}^{b+t} f^{2}=f^{2}(b) .
\end{aligned}
$$

Then rewriting $\frac{1}{2 t} \int_{b-t}^{b+t}|f-f(b)|^{2}=\frac{1}{2 t} \int_{b-t}^{b+t} f^{2}-2 f(b) \frac{1}{2 t} \int_{b-t}^{b+t} f+f^{2}(b)$, this completes the proof.

Problem 4B,9

Prove that if $t \in[0,1]$, then there exists a Borel set $E \subset \mathbb{R}$ such that the density of E at 0 is t.
Proof: We only need to consider $t \in(0,1)$. E can be chosen as follows:

$$
\begin{gathered}
E_{1}=\bigcup_{n=1}^{\infty}\left(\frac{1}{n}-t\left(\frac{1}{n}-\frac{1}{n+1}\right), \frac{1}{n}\right) \\
E_{2}=\bigcup_{n=1}^{\infty}\left(-\frac{1}{n},-t\left(\frac{1}{n+1}-\frac{1}{n}\right)-\frac{1}{n}\right) \\
E=E_{1} \bigcup E_{2}
\end{gathered}
$$

Then it is easy to check this E satisfies the conclusion.

