
Hanbing Fang Homework 3 MAT324: Real Analysis

Problem 4A,4
show that the constant 3 in the Vitali Covering cannot be replaced by a smaller positive constant.

Proof: Just take two intervals, (0, 1), (1− 1
n , 2−

1
n ), where n can be arbitrary large positive integer.

Problem 4A,8
Find a formula for the Hardy-Littlewood maximal function of the function h : R → [0,∞) defined by

f(x) =

{
x if 0 ≤ x ≤ 1

0 otherwise

Proof:

f∗(x) =



1

4(1− x)
if x ∈ (−∞,

1

2
]

x if x ∈ [
1

2
, 1)

x−
√
x2 − 1

2
if x ∈ (1,∞)

Problem 4A,11
Give an example of a Borel measurable function h : R → [0,∞) such that h∗(b) < ∞ for all b ∈ R but
sup{h∗(b)|b ∈ R} = ∞.

Proof: We construct a continuous integrable function f as follows: for each integer n, set f(n) = |n|, f(n− 1
n9 ) = 0,

f(n + 1
n9 ) = 0. Then let f be linear function between these points. Since

∑∞
n=−∞

1
n8 < ∞, we know the

function is integrable and continuous. Note f∗(x) ≥ f(x), we know that sup{h∗(b)|b ∈ R} = ∞. Note
that for every x0 ∈ R, limb→+∞

1
2b

∫ x0+b

x0−b
f(x)dx = 0, limb→0

1
2b

∫ x0+b

x0−b
f(x)dx = f(x0),

1
2b

∫ x0+b

x0−b
f(x)dx = 0 is

continuous function in b ∈ (0,∞), we know that h : R → [0,∞) such that h∗(b) < ∞ for all b ∈ R.

Problem 4A,13
Show that there exists h ∈ L1(R) such that h∗(b) = ∞ for every b ∈ Q.

Proof: First we can construct a integrable function g such that g∗(0) = ∞, g∗(x) < ∞ for each x ̸= 0 (e.g.
consider g(x) = log |x| near 0). Now let {qk}∞k=1 be all rational numbers. Our h can be chosed to be

h(x) =

∞∑
k=1

1

2k
g(x− qk).

It is easy to check this is convergent series and satisfies all the assumption.

Problem 4B,2
Suppose f ∈ L1(R).Prove that for almost every b ∈ R,

lim
t↓0

sup{ 1

|I|

∫
I

|f − fI | : I is an interval of length t containing b} = 0.

Proof: Let b be a Lebesgue point, which means

lim
t↓0

1

2t

∫ b+t

b−t

|f − f(b)| = 0.
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Let I be an interval containing b. Then | 1
|I|

∫
I
f(x)dx− f(b)| = | 1

|I|
∫
I
(f(x)− f(b))| ≤ 1

|I|
∫
I
|f(x)− f(b)|dx

≤ 1
|I|

∫ b+|I|
b−|I| |f(x)− f(b)|dx. Therefore

lim
t↓0

sup{fI − f(b) : I is an interval of length t containing b} = 0

This obviously implies the

lim
t↓0

sup{ 1

|I|

∫
I

|f − fI | : I is an interval of length t containing b} = 0.

Problem 4B,3
Suppose f : R → R is a Lebesgue measurable function such that f2 ∈ L1(R). Prove that

lim
t↓0

1

2t

∫ b+t

b−t

|f − f(b)|2 = 0

Proof: Note that f2 ∈ L1(R) implies f ∈ L1
loc(R). And since we are dealing with local property, we in fact

can assume f ∈ L1(R). Then take b to be both Lebeges point of f, f2. Then

lim
t↓0

1

2t

∫ b+t

b−t

|f − f(b)| = 0.

lim
t↓0

1

2t

∫ b+t

b−t

|f2 − f2(b)| = 0.

which of course implies

lim
t↓0

1

2t

∫ b+t

b−t

fdx = f(b)

lim
t↓0

1

2t

∫ b+t

b−t

f2 = f2(b).

Then rewriting 1
2t

∫ b+t

b−t
|f − f(b)|2 = 1

2t

∫ b+t

b−t
f2 − 2f(b) 1

2t

∫ b+t

b−t
f + f2(b), this completes the proof.

Problem 4B,9
Prove that if t ∈ [0, 1], then there exists a Borel set E ⊂ R such that the density of E at 0 is t.

Proof: We only need to consider t ∈ (0, 1). E can be chosen as follows:

E1 =

∞∪
n=1

(
1

n
− t(

1

n
− 1

n+ 1
),

1

n
)

E2 =

∞∪
n=1

(− 1

n
,−t(

1

n+ 1
− 1

n
)− 1

n
)

E = E1

∪
E2

Then it is easy to check this E satisfies the conclusion.
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