Problem 4A,4

show that the constant 3 in the Vitali Covering cannot be replaced by a smaller positive constant.

Proof: Just take two intervals, $(0,1), (1-\frac{1}{n}, 2-\frac{1}{n})$, where n can be arbitrary large positive integer.

Problem 4A,8

Find a formula for the Hardy-Littlewood maximal function of the function $h: \mathbb{R} \to [0,\infty)$ defined by

$$f(x) = \begin{cases} x & if \ 0 \le x \le 1\\ 0 & otherwise \end{cases}$$

Proof:

$$f^*(x) = \begin{cases} \frac{1}{4(1-x)} & \text{if } x \in (-\infty, \frac{1}{2}] \\ x & \text{if } x \in [\frac{1}{2}, 1) \\ \frac{x - \sqrt{x^2 - 1}}{2} & \text{if } x \in (1, \infty) \end{cases}$$

Problem 4A,11

Give an example of a Borel measurable function $h : \mathbb{R} \to [0, \infty)$ such that $h^*(b) < \infty$ for all $b \in \mathbb{R}$ but $\sup\{h^*(b)|b \in \mathbb{R}\} = \infty$.

Proof: We construct a continuous integrable function f as follows: for each integer n, set $f(n) = |n|, f(n - \frac{1}{n^9}) = 0$, $f(n + \frac{1}{n^9}) = 0$. Then let f be linear function between these points. Since $\sum_{n=-\infty}^{\infty} \frac{1}{n^8} < \infty$, we know the function is integrable and continuous. Note $f^*(x) \ge f(x)$, we know that $\sup\{h^*(b)|b \in \mathbb{R}\} = \infty$. Note that for every $x_0 \in \mathbb{R}, \lim_{b \to +\infty} \frac{1}{2b} \int_{x_0-b}^{x_0+b} f(x) dx = 0, \lim_{b \to 0} \frac{1}{2b} \int_{x_0-b}^{x_0+b} f(x) dx = f(x_0), \frac{1}{2b} \int_{x_0-b}^{x_0+b} f(x) dx = 0$ is continuous function in $b \in (0, \infty)$, we know that $h : \mathbb{R} \to [0, \infty)$ such that $h^*(b) < \infty$ for all $b \in \mathbb{R}$.

Problem 4A,13 Show that there exists $h \in \mathcal{L}^1(\mathbb{R})$ such that $h^*(b) = \infty$ for every $b \in \mathbb{Q}$.

Proof: First we can construct a integrable function g such that $g^*(0) = \infty, g^*(x) < \infty$ for each $x \neq 0$ (e.g. consider $g(x) = \log |x|$ near 0). Now let $\{q_k\}_{k=1}^{\infty}$ be all rational numbers. Our h can be chosed to be

$$h(x) = \sum_{k=1}^{\infty} \frac{1}{2^k} g(x - q_k)$$

It is easy to check this is convergent series and satisfies all the assumption.

Problem 4B,2 Suppose $f \in \mathcal{L}^1(\mathbb{R})$.Prove that for almost every $b \in \mathbb{R}$, $\lim_{t \downarrow 0} \sup\{\frac{1}{|I|} \int_I |f - f_I| : I \text{ is an interval of length } t \text{ containing } b\} = 0.$

Proof: Let b be a Lebesgue point, which means

$$\lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)| = 0.$$

Homework 3

Let I be an interval containing b. Then $\left|\frac{1}{|I|}\int_{I}f(x)dx - f(b)\right| = \left|\frac{1}{|I|}\int_{I}(f(x) - f(b))\right| \le \frac{1}{|I|}\int_{I}|f(x) - f(b)|dx$ $\le \frac{1}{|I|}\int_{b-|I|}^{b+|I|}|f(x) - f(b)|dx$. Therefore

$$\limsup_{t \downarrow 0} \sup\{f_I - f(b) : I \text{ is an interval of length } t \text{ containing } b\} = 0$$

This obviously implies the

$$\lim_{t \downarrow 0} \sup\{\frac{1}{|I|} \int_{I} |f - f_{I}| : I \text{ is an interval of length } t \text{ containing } b\} = 0$$

Problem 4B,3

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable function such that $f^2 \in \mathcal{L}^1(\mathbb{R})$. Prove that

$$\lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)|^2 = 0$$

Proof: Note that $f^2 \in \mathcal{L}^1(\mathbb{R})$ implies $f \in \mathcal{L}^1_{loc}(\mathbb{R})$. And since we are dealing with local property, we in fact can assume $f \in \mathcal{L}^1(\mathbb{R})$. Then take b to be both Lebeges point of f, f^2 . Then

$$\lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)| = 0.$$
$$\lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} |f^2 - f^2(b)| = 0.$$

which of course implies

$$\lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} f dx = f(b)$$
$$\lim_{t \downarrow 0} \frac{1}{2t} \int_{b-t}^{b+t} f^2 = f^2(b).$$

Then rewriting $\frac{1}{2t} \int_{b-t}^{b+t} |f - f(b)|^2 = \frac{1}{2t} \int_{b-t}^{b+t} f^2 - 2f(b) \frac{1}{2t} \int_{b-t}^{b+t} f + f^2(b)$, this completes the proof.

Problem 4B,9

Prove that if $t \in [0, 1]$, then there exists a Borel set $E \subset \mathbb{R}$ such that the density of E at 0 is t.

Proof: We only need to consider $t \in (0, 1)$. E can be chosen as follows:

$$E_1 = \bigcup_{n=1}^{\infty} \left(\frac{1}{n} - t\left(\frac{1}{n} - \frac{1}{n+1}\right), \frac{1}{n}\right)$$
$$E_2 = \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, -t\left(\frac{1}{n+1} - \frac{1}{n}\right) - \frac{1}{n}\right)$$
$$E = E_1 \bigcup E_2$$

Then it is easy to check this E satisfies the conclusion.